

技術..品質..服務..價格..

TEL:886-2-2772-3316 FAX:886-2-2711-0119 E-MAIL:fayin.tw@msa.hinet.net

Ethernet

Ethernet 是美國 1970 年代前半 Xerox 公司研發部門的成果。目的是針對如目前所看到的 Office 環境而設,並當作分散式網路架構的體系之一,所開發而成的 Lan 方式,名稱上,取 自古代被認為能傳達光和電磁波的媒體 Ether 而來。正式規格則由 Dec 公司,Intel 公司及 Xerox 公司共同整理公開,作為業界標準,而急速普及。後來規格作了一點擴充,而被美國工業規格 IEEE 802.3 所採納,目前市面上的機器皆根據此而製作。如今 Ethernet 非常普遍,從家庭、公司到工廠等等,所有資訊傳達的領域都有使用。

Ethernet 概要

Ethernet 原理上,是一種 Cable 上連接各自內藏網路卡的多台電腦,一台送信號,其他所有的電腦皆能同時接收。並各自存取屬於自己的資料而棄捨別台所需的資料。為了預防多台電腦同時送信產生混信現象,則各送信的電腦需採用下列方式:

- 1. 送信的一方看到 Cable 上的信號,並確認他方沒有送信之後開始送信。
- 2. 即使送信過程中,也要憑波形監視是否和他方的送信有所衝突。若有衝突便在一定送信量 之後暫時中斷,並經過一段隨機時間後再從步驟1重新再作。

這種方式叫做 CSMA, 意指(Carrier Sense Multiple Access / Collision Detection)。以通信速度來看,起初為 10M bps, 更進一步正在普及為 1G bps。

	10BASE5	10BASE2	10BASE-T	100BASE-T	1000BASE-T
最大傳送距離	500m	185m	100m	100m	100m
最大傳送速度	10M bps	10M bps	10M bps	100M bps	1G bps
Cable 種類	同軸	同軸	UTP, STP	UTP, STP	UTP, STP
接頭	AUI	BNC	RJ45	RJ45	RJ45

表 1 Ethernet Cable 種類表

Ethernet Cable 規格上有 10 Base5, 10Base2, 10Base-T, 100Base-T, 1000Base-T 等等。數字代表傳速。例如,若為 10 代表 10M bps,而 Base 意謂著數位通信的 Base band。而 5 或 2 是指最大傳送距離。5 代表 500m,2 代表 200m(正確應是 185m)。若後面有字母 T 就不是指傳送距離,而是指 Cable 中兩線交扭(Twisted)來使用的意思。

以前 10 Base 是粗的同軸 Cable。最近,由於施工容易,用端子(RJ45)即可連線的 Twist Pair 方式線已成主流。表 1 顯示上述的 Cable 規格。而且,在 Twist Pair 線的場合,通常使用 4-16 port 的集線器(Hub) 對各 PC 作放射狀配線。而且,再與多台 Hub 連線,也可以把 Hub 當作和同軸的 Cable 連接。

技術..品質..服務..價格..

TEL:886-2-2772-3316 FAX:886-2-2711-0119 E-MAIL:fayin.tw@msa.hinet.net

Ethernet 因為是推想為 Office 環境的網路架構,一台故障並不會影響全體。而且也考慮到即使 On-Line 時,也可以增設或減少,而各網路卡透過 IEEE Vendor 管理,在世界上唯一 48 bits 的位址可以分攤,不需位址的設定及變更,即使安插到任何地方的 Lan 也都能這樣使用。而且,網路卡也可以擁有多組的群組位址,可針對特定群組下的全部網路卡進行送信號。Ethernet 方面,有 TCP/IP ,UDP/IP 各種協定並存。以下簡單說明之。

TCP 及 UDP

TCP/IP (Transmission Control Protocol / Internet Protocol) 是 Internet 及 Internet 上廣泛利用的通信協定之一種。說到起源,1969 年美國開發 Arpanet,當時是把研究機構和大學連線成廣域網路為目的之一種協定。其後,隨著研究團隊而漸改良進化,到 1975 年才確定有 TCP/IP 這樣的基本規格。到 1983 更有 Unix 而展開正式的運用。

TCP/IP 的協定

這是在電腦使用 Group 進行通信時,把「各種決定的規則」稱為通信協定。那些已決定的規則,根據通信方面分配的內容,將它分割並階層化而成國際標準 Model 即是 ISO 提倡的 OSI (Open System Inter Connection)通訊架構(參考表 2)。

「OSI 網路架構」是為了要使人明白通信協定的一個很好的雛形。TCP/IP 的協定和 OSI 網路架構是同樣的想法而使之階層化。OSI 網路架構分成七層而 TCP/IP 則分成 5 或 4 層(參考表 2)。而且 TCP/IP 裡,TCP/IP 及 IP 這兩層才是核心。(註:TCP/UDP 相當於 OSI 網路架構中的傳輸層,而 IP 層則相當於 OSI 網路架構中的網路層)。

TCP和 UDP 的差異

有關 PC 人士的通信,發送的一方發出資料傳達往接受的一方時,必須考慮到資料的損傷、消失、重複及延遲,還有到達順序分歧等。若能詳加檢查上述這些項目,並在偵出時候自動補正,即能確保通信的可靠性。

TCP在資料通信時,承擔這樣的任務,並提供可靠的信賴及傳達保證。不過,正因為TCP重視資料傳達保證,而增加了一些類似「Error Check」和「要求重送」的手續緣故,在「高速送達資料」這一點上,受到性能上的限制。因而省略掉TCP的傳達保證,相對地成為重視高速性的協定,這就是UDP(即User Dataframe Protocol)。

UDP 因為不提供類似「送受信確認」和「再送要求」的傳達保證,故在可靠性方面比 TCP 略遜一籌。但事實上,在 UDP 的應用層(Application Layer),使用者自行處理,而做到充分的可靠。只是最近作為網路的物理層,因為高速的 Ethernet (100M bps) 已漸普及,而且電腦的處理速度日益改善,所以 TCP 也更相當能展現它的高速性能。也因此,對自動化的控制 Bus

技術..品質..服務..價格..

TEL:886-2-2772-3316 FAX:886-2-2711-0119 E-MAIL:fayin.tw@msa.hinet.net

而言,TCP 確實有可用之處。

	OSI	〔網路架構(七層架構)	TCP/IP (分4層)	TCP/IP (分5層)
第七層	應用層 Application	進行何種通信服務,又執行了什麼? (和應用的種類有關的規定)		
第六層	表達層 Presentation	用何種顯示形式來傳送? (和 Data 的種類及送信 Bit 數有關的規定)	應用層 Application	應用層 Application
第五層	會議層 Cession	用何種對話模式來傳送? (和通信模式及同期方式有關的 規定)		
第四層	傳輸層 Transportation	是否已正確送達對方的確認方法 是什麼? (和送受信確認及應用的辨識有 關之規定)	傳輸層 Transport (TCP/UDP 層)	傳輸層 Transport (TCP/UDP 層)
第三層	網路層 Network	對方的辨別住址是什麼?如何使 用通信網? (和通信經絡的選擇及辨別位址 有關的規定)	網際網路層 Internet (IP 層)	網際網路層 Internet (IP 層)
第二層	資料連結層 Data Link	傳送路由的確認及末端辨識方法 是什麼? (和通信路由的確認及錯誤修正 的相關規定)	網路介面 Network	資料連結層 Data-Link (MAC 層)
第一層	物理層 Physical	在傳送路上,傳送資料的媒體及 方法是什麼? (和硬體線路、儀器類、電器信號 有關的規定)	Interface	物理層 Physical

表 2 OSI 網路架構及 TCP/IP 協定架構參照表

技術..品質..服務..價格..

TEL:886-2-2772-3316 FAX:886-2-2711-0119 E-MAIL:fayin.tw@msa.hinet.net

Modbus-TCP

Modbus-TCP 是在 Ethernet 的 TCP/IP 的協定上,裝載 Modbus 協定的 Open Field Work。該結構很簡單,在當作平台的 TCP 的架構下,將 Modbus 的資料結構納入的一種產物(參考圖 1)。

使用者可以用此方式,針對在 Modbus 協定的詢問及回應等決議項目(參考 Modbus 的項目), 好好利用。

Modbus-TCP 可以使用 Ethernet, 並作為簡單高速控制用的 Open Field Network, 最近已呈現普及化。

Transaction	Protocol	Length	Modbus	TCP
Identifier	Identifier	Field	Frame	Frame
Modbus Frame	Address	Function Code	Data	Check Sum
_		圖 1		